
Parsing Algorithms 2:
LR Parsing

CS 4447 / CS 9545 -- Stephen Watt
University of Western Ontario

Readings

• Purple Dragon Chapter 3. Lexical analysis

• Purple Dragon Chapter 4. Parsing

CS4447/CS9545

LR(k) Parsing

Left-to-right scan, Right-most derivation,
with k tokens of look-ahead.

+ Most general non-backtracking shift-reduce parsers

+ Larger class of grammars than LL parsing

+ Detect syntax errors as soon as possible with left-to-right scan

CS4447/CS9545

+ Detect syntax errors as soon as possible with left-to-right scan

- Tables not suitable to build by hand

Three Methods

• SLR – simple LR.
Easiest to implement; least powerful.

• Canonical LR.
Hard to implement; most powerful.

• LALR – look ahead LR.
Relatively easy to implement; quite powerful.

CS4447/CS9545

Relatively easy to implement; quite powerful.

Overall Idea

• Input string of tokens

• Stack of parser states

• Action and Goto tables

• Parsing engine
a0 a1 … ak … an $

LR Parsing

CS4447/CS9545

sm

Xm

sm-1

Xm-1

…
…
…
s0

Engine

Action
Table

Goto
Table

The LR Parsing Engine

• Stack contains
– X[i] grammar symbols
– s[i] “states”

• Action table gives, for each (s[i], a[j]) pair, one of
– shift s[j], for some state j

CS4447/CS9545

– shift s[j], for some state j
– reduce A → β, for some production of the grammar
– accept parsing is finished
– error parser has discovered an error

• Goto table gives, for each state + grammar symbol, a new
state.

Parser Configurations

• A pair

– Stack contents

– Rest of input

• For our figure

(s0 X1 s1 X2 s2 … Xm sm , ak ak+1 … an $)

• This corresponds to a mid-derivation form

CS4447/CS9545

• This corresponds to a mid-derivation form
X1 X2 … Xm ak ak+1 … an $

interleaved with parser states.

Parser Action
Config = (s0 X1 s1 X2 s2 … Xm sm, ak ak+1 … an $)

• If Action(s[m], a[k]) == shift s.
s = Goto(s[m], a[k])
Config = (s0 X1 s1 X2 s2 … Xm sm ak s, ak+1 … an $)

• If Action(s[m], a[k]) == reduce A → β
r = |β|

CS4447/CS9545

r = |β|
s = Goto(s[m-r], A)
Config = (s0 X1 s1 X2 s2 … Xm-r sm-r A s, ak+1 … an $)

• If Action(s[m], a[k]) == accept
accept

• If Action(s[m], a[k]) == error
halt, or attempt error recovery

Example

1. E → E “+” T

2. E → T
3. T → T “*” F

4. T → F
5. F → “(” E “)”

6. F → id

State Action Goto

Id + * () $ E T F

0 s5 s4 1 2 3

1 s6 acc

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

CS4447/CS9545

4

5 r6 r6 r6 r6

6 s5 s4 9 3

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

Constructing Parsing Tables

• Build a Finite Automaton to recognize viable prefixes of rules.

• LR(0) items:

E → • E “+” T

E → E • “+” T

E → E “+” • T

CS4447/CS9545

E → E “+” • T

E → E “+” T •

• Indicates how much of production has been seen

• Can be represented as (production #, dot position)

Closure of an Item Set

Given set of items I for grammar G,
closure(I) is the set formed by:

• All elements of I are in closure(I)

• If A → α • B β is in closure(I) and B →γ is a production in
G, then B → • γ is in closure(I)

CS4447/CS9545

closure(I) captures the idea of finding all the rules that might
be applicable at a given point.

Closure Example

• Augment previous grammar with E’ → E.

• Closure of {E’ → •E} is

{E’ → •E,
E → •E “+” T, E → •T,
T → •T “*”F, T → •F,
F → • “(” E “)”, F → • id}

CS4447/CS9545

The Goto Operation

• Goto(I,X) for an item set I and grammar symbol X, is the set of
items obtained by “moving the dot past X” in the items.

J := { }

for all A → α • X β in I, add A → α X • β to J.

return closure(J).

CS4447/CS9545

return closure(J).

Constructing the Automaton

Initialize T to { closure({S’ → • S $}) }
Initialize E to { }
repeat

for each state I in T
for each item A → α • X β in I

J := Goto(I,X)
T := T U { J }

CS4447/CS9545

T := T U { J }
E := E U { I →[X] J }

until E and T do not change

Note that for X = $ we do not compute Goto(I,$).
Instead we make an accept action.

Constructing the Tables

• For each edge I →[X] J

– If X is a terminal,
put the action shift J at position (I,X) of the table.

– If X is a nonterminal,
put goto J at position (I,X)

• For each state I containing an item S’ → S • $,

CS4447/CS9545

• For each state I containing an item S’ → S • $,

– put an accept action at (I, $)

• For a state containing A → γ •
(production n with a dot at the end),
put reduce n at (I, K) for every token K.

LR(1) Items

• Some languages cannot be handled with LR(0).
Some look-ahead is needed.

• An LR(1) item is of the form

[A →, a],

for A a non-terminal, a a terminal, and strings of terminals
and non-terminals.

CS4447/CS9545

and non-terminals.

• The terminal a is the “look-ahead”.

It has no effect when is non-empty.

When is empty, i.e. for [A →, a], the item says to reduce
the production A →

Closure with LR(1) Items

• Compute the closure of a set I of LR(1) in items with grammar
G’ as follows:

Closure(I) == {
repeat

for each item [A → B, a] in I repeat
for each production B → in G’ repeat

CS4447/CS9545

for each production B → in G’ repeat
for each terminal b in FIRST(a) repeat

I := I { [B → , b] }
until I stops growing
return I

}

Goto with LR(1) Items

• Compute the goto of a set I of LR(1) in items with grammar G’
as follows:

Goto(I, X) == {
J := { }
for each item [A → X, a] in I repeat

J := J { [A → X , a] }

CS4447/CS9545

J := J { [A → X , a] }
return Closure(J)

}

Computing Valid LR(1) Items

• Many potential LR(1) items will not be used.
Compute the needed ones as follows:

Items(G’) == {
C := { Closure({ [S’ → S, $] }) }

repeat
for each item set I in C repeat

CS4447/CS9545

for each item set I in C repeat
for each grammar symbol X repeat

J := Goto[I,X]
if J nonempty and J not in C then C := C { J }

until C stops growing

Constructing an LR(1) Parser

• To build the automaton, use the new definitions of Closure and
Goto in the previous algorithm.

• To build the tables, change

For a state containing A → γ •
(production n with a dot at the end),

CS4447/CS9545

(production n with a dot at the end),
put reduce n at (I, K) for every token K.

to

For a state containing A → [γ •, a]
(production n with a dot at the end),
put reduce n at (I, a).

