Parsing Algorithms 2:

LR Parsing

CS 4447 | CS 9545 -- Stephen Watt
University of Western Ontario

» Purple Dragon Chapter 3. Lexical analysis
» Purple Dragon Chapter 4. Parsing

CS4447/CS9545

LR(k) Parsing

Left-to-right scan, Right-most derivation,
with k tokens of look-ahead.

+ Most general non-backtracking shift-reduce parsers

+ Larger class of grammars than LL parsing

+ Detect syntax errors as soon as possible with left-to-right scan
- Tables not suitable to build by hand

CS4447/CS9545

Three Methods

« SLR — simple LR.
Easiest to implement; least powertul.

« Canonical LR.
Hard to implement; most powerful.

 LALR — look ahead LR.
Relatively easy to implement; quite powerful.

CS4447/CS9545

Overall Idea

* Input string of tokens
» Stack of parser states
* Action and Goto tables 201a1 1 Tak| . lanls

- Parsing engine t
LR Parsing
S o — Engine
Xm
Sm-1
Xm-1
S0 Action | Goto
Table Table

CS4447/CS9545

The LR Parsing Engine

« Stack contains
— X][i] grammar symbols
— sJi] “states”

 Action table gives, for each (s[i], a[j]) pair, one of

— shift s[j], for some state |

— reduce A — 3, for some production of the grammar
— accept parsing is finished

— error parser has discovered an error

« Goto table gives, for each state + grammar symbol, a new
state.

CS4447/CS9545

Parser Configurations

* A pair
— Stack contents
— Rest of input
 For our figure
(so X181 X2s2... XmSm , ak ak+1...an$)

 This corresponds to a mid-derivation form
X1X2...Xm ak ak+1...an$
interleaved with parser states.

CS4447/CS9545

Config = (sO X1s1X2s2... Xmsm, ak ak+1 ... an $)

« If Action(s[m], a[k]) == shift s.
s = Goto(s[m], a[k])
Config = (sO X1 s1 X2s2... Xmsm aks, ak+1 ... an $)

« If Action(s[m], a[k]) == reduce A — 3
r= B
s = Goto(s[m-r], A)
Config = (sO X1s1 X2s2 ... Xm-rsm-rAs, ak+1 ... an $)

* If Action(s[m], a[k]) == accept
accept

* If Action(s[m], a[k]) == error
halt, or attempt error recovery

CS4447/CS9545

1.E—-E™+" T

2.E-T
3T >T“F
4. T >F
5.F —“CE"“Y
6.F — id

CS4447/CS9545

State Action Goto
| o+ |] (])| S T| F
0 s5 s4 2 3
1 s6 acc
2 r2 s’ r2 r2
3 r4 r4 r4 r4
4 s5 s4 2 3
5 ré ré ré ré
6 85 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s’ r1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Constructing Parsing Tables

 Build a Finite Automaton to recognize viable prefixes of rules.
* LR(0) items:

E —3 e E “+” T
E — E ° “+” T
E — E “+” ° T

E — E “+” T °
* Indicates how much of production has been seen
« Can be represented as (production #, dot position)

CS4447/CS9545

Closure of an Item Set

Given set of items I for grammar G,
closure(I) is the set formed by:

 All elements of T are in closure(I)

 IfA—ae+*Bfisin closure(l) and B —vy is a production in
G, then B — * yis in closure(I)

closure(I) captures the idea of finding all the rules that might
be applicable at a given point.

CS4447/CS9545

Closure Example

* Augment previous grammar with E' — E.
* Closure of {E" — *E} is

{E' — °E,

E—-E“+"T, E — T,

T — T "F, T — °F,

F—->“"E")", F—-id}

CS4447/CS9545

The Goto Operation

» Goto(I,X) for an item set I and grammar symbol X, is the set of
items obtained by “moving the dot past X" in the items.

J={}
forall A a+XBinI,add A - aXe-Bto].
return closure(]J).

CS4447/CS9545

Constructing the Automaton

Initialize T to { closure({S’ — + S $}) }
Initialize E to { }
repeat

foreach state | in T
foreachitem A—-a<*Xpin |

J ;= Goto(l,X)

T=TU{J}

E=EU{lI>[X]J}
until E and T do not change

Note that for X = $ we do not compute Goto(l,$).
Instead we make an accept action.

CS4447/CS9545

Constructing the Tables

 For each edge | —[X] J

— If X'is a terminal,
put the action shift J at position (I,X) of the table.

— If X is a nonterminal,
put goto J at position (I,X)

» For each state | containing anitem S’ — S« $,
— put an accept action at (I, $)

* For a state containing A —» vy °
(production n with a dot at the end),
put reduce n at (I, K) for every token K.

CS4447/CS9545

LR(1) Items

« Some languages cannot be handled with LR(0).
Some look-ahead is needed.

 An LR(1) item is of the form

[A —aep, al,

for A a non-terminal, a a terminal, o and S strings of terminals
and non-terminals.

* The terminal a is the “look-ahead”.
It has no effect when £ is non-empty.

When gis empty, i.e. for[A — e, a], the item says to reduce
the production A — e

CS4447/CS9545

Closure with LR(1) Items

« Compute the closure of a set | of LR(1) in items with grammar
G’ as follows:

Closure(l) ==
repeat
foreach item [A —-ae Bf, a]in | repeat
for each production B — yin G’ repeat
for each terminal b in FIRST(fa) repeat
|:=1U{[B— ey, b]}
until | stops growing
return |

CS4447/CS9545

Goto with LR(1) Items

« Compute the goto of a set | of LR(1) in items with grammar G’
as follows:

Goto(l, X) ==
J:={}

foreachitem[A —-«a ¢ X[, a] in | repeat
J=JU{[A—oaXepf a]}
return Closure(J)

}

CS4447/CS9545

Computing Valid LR(1) ltems

« Many potential LR(1) items will not be used.
Compute the needed ones as follows:

ltems(G’) ==
C :={Closure({[S — ¢S, $]})}
repeat
for each item set | in C repeat
for each grammar symbol X repeat
J ;= Gotol[l,X]
if J nonempty and JnotinCthenC:=Cu{J}
until C stops growing

CS4447/CS9545

Constructing an LR(1) Parser

 To build the automaton, use the new definitions of Closure and
Goto in the previous algorithm.

 To build the tables, change

For a state containing A — vy °
(production n with a dot at the end),
put reduce n at (I, K) for every token K.

to

For a state containing A — [y e, 9]
(production n with a dot at the end),
put reduce n at (I, a).

CS4447/CS9545

