Parsing Algorithms 2: LR Parsing

CS 4447 / CS 9545 -- Stephen Watt University of Western Ontario

Readings

- Purple Dragon Chapter 3. Lexical analysis
- Purple Dragon Chapter 4. Parsing

LR(k) Parsing

Left-to-right scan, Right-most derivation, with k tokens of look-ahead.

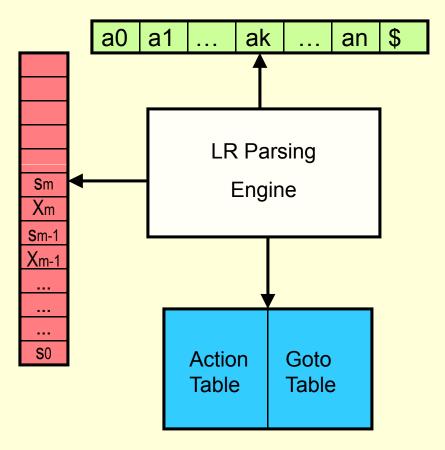
- + Most general non-backtracking shift-reduce parsers
- + Larger class of grammars than LL parsing
- + Detect syntax errors as soon as possible with left-to-right scan
- Tables not suitable to build by hand

Three Methods

- SLR simple LR. Easiest to implement; least powerful.
- Canonical LR. *Hard to implement; most powerful.*
- LALR look ahead LR. Relatively easy to implement; quite powerful.

Overall Idea

- Input string of tokens
- Stack of parser states
- Action and Goto tables
- Parsing engine



The LR Parsing Engine

- Stack contains
 - X[i] grammar symbols
 - s[i] "states"
- Action table gives, for each (s[i], a[j]) pair, one of
 - *shift* s[j], for some state j
 - reduce $A \rightarrow \beta$, for some production of the grammar
 - *accept* parsing is finished
 - *error* parser has discovered an error
- Goto table gives, for each state + grammar symbol, a new state.

Parser Configurations

- A pair
 - Stack contents
 - Rest of input
- For our figure

(so X1 s1 X2 s2 ... Xm sm , ak ak+1 ... an \$)

 This corresponds to a mid-derivation form X1 X2 ... Xm ak ak+1 ... an \$ interleaved with parser states.

Parser Action

Config = (s0 X1 s1 X2 s2 ... Xm sm, ak ak+1 ... an \$)

- If Action(s[m], a[k]) == shift s.
 s = Goto(s[m], a[k])
 Config = (s0 X1 s1 X2 s2 ... Xm sm ak s, ak+1 ... an \$)
- If Action(s[m], a[k]) == reduce A → β
 r = |β|
 s = Goto(s[m-r], A)
 Config = (s0 X1 s1 X2 s2 ... Xm-r sm-r A s, ak+1 ... an \$)
- If Action(s[m], a[k]) == accept accept
- If Action(s[m], a[k]) == error halt, or attempt error recovery

Example

1. $E \rightarrow E$ "+" T 2. $E \rightarrow T$ 3. $T \rightarrow T$ "*" F 4. $T \rightarrow F$ 5. $F \rightarrow$ "(" E ")" 6. $F \rightarrow id$

State	Action						Goto		
	ld	+	*	()	\$	Е	Т	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

CS4447/CS9545

Constructing Parsing Tables

- Build a Finite Automaton to recognize viable prefixes of rules.
- LR(0) items:
 - $E \rightarrow \bullet E$ "+" T
 - $E \rightarrow E \bullet "+" T$
 - $\mathsf{E} \to \mathsf{E} "+" \bullet \mathsf{T}$
 - $E \rightarrow E$ "+" $T \bullet$
- Indicates how much of production has been seen
- Can be represented as (production #, dot position)

Closure of an Item Set

Given set of items I for grammar G, *closure*(I) is the set formed by:

- All elements of I are in closure(I)
- If $A \rightarrow \alpha \bullet B \beta$ is in closure(1) and $B \rightarrow \gamma$ is a production in G, then $B \rightarrow \bullet \gamma$ is in closure(1)

closure(I) captures the idea of finding all the rules that might be applicable at a given point.

Closure Example

- Augment previous grammar with $E' \rightarrow E$.
- Closure of $\{E' \rightarrow \bullet E\}$ is

$$\{E' \rightarrow \bullet E, \\ E \rightarrow \bullet E "+" T, E \rightarrow \bullet T, \\ T \rightarrow \bullet T "*"F, T \rightarrow \bullet F, \\ F \rightarrow \bullet "(" E ")", F \rightarrow \bullet id\}$$

The Goto Operation

 Goto(I,X) for an item set I and grammar symbol X, is the set of items obtained by "moving the dot past X" in the items.

```
\begin{split} J &:= \{ \} \\ \text{for all } A \to \alpha \bullet X \ \beta \text{ in } \mathbb{I}, \text{ add } A \to \alpha X \bullet \beta \text{ to } \mathbb{J}. \\ \text{return closure}(\mathbb{J}). \end{split}
```

Constructing the Automaton

```
Initialize T to { closure({S' \rightarrow \bullet S $}) }
Initialize E to { }
repeat
for each state I in T
for each item A \rightarrow \alpha \bullet X \beta in I
J := Goto(I,X)
T := T U { J }
E := E U { I \rightarrow[X] J }
until E and T do not change
```

Note that for X =\$ we do not compute Goto(*I*,\$). Instead we make an accept action.

Constructing the Tables

- For each edge I \rightarrow [X] J
 - If X is a terminal,
 put the action *shift J* at position (I,X) of the table.
 - If X is a nonterminal, put goto J at position (I,X)
- For each state I containing an item S' \rightarrow S \$,
 - put an accept action at (I, \$)
- For a state containing A → γ •
 (production *n* with a dot at the end),
 put *reduce n* at (I, K) for every token K.

LR(1) Items

- Some languages cannot be handled with LR(0).
 Some look-ahead is needed.
- An LR(1) item is of the form

 $[A \rightarrow \alpha \bullet \beta, a],$

for A a non-terminal, a a terminal, α and β strings of terminals and non-terminals.

• The terminal *a* is the "look-ahead".

It has no effect when β is non-empty.

When β is empty, *i.e.* for $[A \rightarrow \alpha \bullet, a]$, the item says to reduce the production $A \rightarrow \alpha \bullet$

Closure with LR(1) Items

 Compute the closure of a set I of LR(1) in items with grammar G' as follows:

```
Closure(I) == {
repeat
for each item [A \rightarrow \alpha \bullet B\beta, a] in I repeat
for each production B \rightarrow \gamma in G' repeat
for each terminal b in FIRST(\betaa) repeat
I := I \cup { [B \rightarrow \bullet \gamma, b] }
until I stops growing
return I
```

}

Goto with LR(1) Items

 Compute the goto of a set I of LR(1) in items with grammar G' as follows:

```
Goto(I, X) == {

J := { }

for each item [A \rightarrow \alpha \bullet X\beta, a] in I repeat

J := J \cup { [A \rightarrow \alpha X \bullet \beta, a] }

return Closure(J)
```

}

Computing Valid LR(1) Items

Many potential LR(1) items will not be used.
 Compute the needed ones as follows:

```
Items(G') == {

C := { Closure( { [S' \rightarrow \bullet S, $] } ) }

repeat

for each item set I in C repeat

for each grammar symbol X repeat

J := Goto[I,X]

if J nonempty and J not in C then C := C \cup { J }

until C stops growing
```

Constructing an LR(1) Parser

- To build the automaton, use the new definitions of Closure and Goto in the previous algorithm.
- To build the tables, change

For a state containing $A \rightarrow \gamma \bullet$ (production *n* with a dot at the end), put *reduce n* at (I, K) for every token K.

to

For a state containing $A \rightarrow [\gamma \bullet, a]$ (production *n* with a dot at the end), put *reduce n* at (I, a).